3.5.92 \(\int \frac {\sqrt {a+b x}}{\sqrt {x}} \, dx\) [492]

Optimal. Leaf size=44 \[ \sqrt {x} \sqrt {a+b x}+\frac {a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a+b x}}\right )}{\sqrt {b}} \]

[Out]

a*arctanh(b^(1/2)*x^(1/2)/(b*x+a)^(1/2))/b^(1/2)+x^(1/2)*(b*x+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 44, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {52, 65, 223, 212} \begin {gather*} \sqrt {x} \sqrt {a+b x}+\frac {a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a+b x}}\right )}{\sqrt {b}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x]/Sqrt[x],x]

[Out]

Sqrt[x]*Sqrt[a + b*x] + (a*ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[a + b*x]])/Sqrt[b]

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b x}}{\sqrt {x}} \, dx &=\sqrt {x} \sqrt {a+b x}+\frac {1}{2} a \int \frac {1}{\sqrt {x} \sqrt {a+b x}} \, dx\\ &=\sqrt {x} \sqrt {a+b x}+a \text {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\sqrt {x}\right )\\ &=\sqrt {x} \sqrt {a+b x}+a \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt {a+b x}}\right )\\ &=\sqrt {x} \sqrt {a+b x}+\frac {a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a+b x}}\right )}{\sqrt {b}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.05, size = 47, normalized size = 1.07 \begin {gather*} \sqrt {x} \sqrt {a+b x}-\frac {a \log \left (-\sqrt {b} \sqrt {x}+\sqrt {a+b x}\right )}{\sqrt {b}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x]/Sqrt[x],x]

[Out]

Sqrt[x]*Sqrt[a + b*x] - (a*Log[-(Sqrt[b]*Sqrt[x]) + Sqrt[a + b*x]])/Sqrt[b]

________________________________________________________________________________________

Maple [A]
time = 0.12, size = 62, normalized size = 1.41

method result size
default \(\sqrt {x}\, \sqrt {b x +a}+\frac {a \sqrt {x \left (b x +a \right )}\, \ln \left (\frac {\frac {a}{2}+b x}{\sqrt {b}}+\sqrt {x^{2} b +a x}\right )}{2 \sqrt {b x +a}\, \sqrt {x}\, \sqrt {b}}\) \(62\)
risch \(\sqrt {x}\, \sqrt {b x +a}+\frac {a \sqrt {x \left (b x +a \right )}\, \ln \left (\frac {\frac {a}{2}+b x}{\sqrt {b}}+\sqrt {x^{2} b +a x}\right )}{2 \sqrt {b x +a}\, \sqrt {x}\, \sqrt {b}}\) \(62\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(1/2)/x^(1/2),x,method=_RETURNVERBOSE)

[Out]

x^(1/2)*(b*x+a)^(1/2)+1/2*a*(x*(b*x+a))^(1/2)/(b*x+a)^(1/2)/x^(1/2)*ln((1/2*a+b*x)/b^(1/2)+(b*x^2+a*x)^(1/2))/
b^(1/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 70 vs. \(2 (32) = 64\).
time = 0.50, size = 70, normalized size = 1.59 \begin {gather*} -\frac {a \log \left (-\frac {\sqrt {b} - \frac {\sqrt {b x + a}}{\sqrt {x}}}{\sqrt {b} + \frac {\sqrt {b x + a}}{\sqrt {x}}}\right )}{2 \, \sqrt {b}} - \frac {\sqrt {b x + a} a}{{\left (b - \frac {b x + a}{x}\right )} \sqrt {x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)/x^(1/2),x, algorithm="maxima")

[Out]

-1/2*a*log(-(sqrt(b) - sqrt(b*x + a)/sqrt(x))/(sqrt(b) + sqrt(b*x + a)/sqrt(x)))/sqrt(b) - sqrt(b*x + a)*a/((b
 - (b*x + a)/x)*sqrt(x))

________________________________________________________________________________________

Fricas [A]
time = 0.46, size = 93, normalized size = 2.11 \begin {gather*} \left [\frac {a \sqrt {b} \log \left (2 \, b x + 2 \, \sqrt {b x + a} \sqrt {b} \sqrt {x} + a\right ) + 2 \, \sqrt {b x + a} b \sqrt {x}}{2 \, b}, -\frac {a \sqrt {-b} \arctan \left (\frac {\sqrt {b x + a} \sqrt {-b}}{b \sqrt {x}}\right ) - \sqrt {b x + a} b \sqrt {x}}{b}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)/x^(1/2),x, algorithm="fricas")

[Out]

[1/2*(a*sqrt(b)*log(2*b*x + 2*sqrt(b*x + a)*sqrt(b)*sqrt(x) + a) + 2*sqrt(b*x + a)*b*sqrt(x))/b, -(a*sqrt(-b)*
arctan(sqrt(b*x + a)*sqrt(-b)/(b*sqrt(x))) - sqrt(b*x + a)*b*sqrt(x))/b]

________________________________________________________________________________________

Sympy [A]
time = 1.07, size = 42, normalized size = 0.95 \begin {gather*} \sqrt {a} \sqrt {x} \sqrt {1 + \frac {b x}{a}} + \frac {a \operatorname {asinh}{\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {a}} \right )}}{\sqrt {b}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(1/2)/x**(1/2),x)

[Out]

sqrt(a)*sqrt(x)*sqrt(1 + b*x/a) + a*asinh(sqrt(b)*sqrt(x)/sqrt(a))/sqrt(b)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)/x^(1/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: Warning, choosing root of [1,0,%%%{-4,[1
,0,0]%%%}+%%%{-4,[0,1,1]%%%}+%%%{-4,[0,1,0]%%%}+%%%{-4,[0,0,1]%%%},0,%%%{6,[2,0,0]%%%}+%%%{12,[1,1,1]%%%}+%%%{
4,[1,1,0]%%%}+%%%{4,[

________________________________________________________________________________________

Mupad [B]
time = 0.68, size = 41, normalized size = 0.93 \begin {gather*} \sqrt {x}\,\sqrt {a+b\,x}+\frac {2\,a\,\mathrm {atanh}\left (\frac {\sqrt {b}\,\sqrt {x}}{\sqrt {a+b\,x}-\sqrt {a}}\right )}{\sqrt {b}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x)^(1/2)/x^(1/2),x)

[Out]

x^(1/2)*(a + b*x)^(1/2) + (2*a*atanh((b^(1/2)*x^(1/2))/((a + b*x)^(1/2) - a^(1/2))))/b^(1/2)

________________________________________________________________________________________